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Multi-Agent Simulation for Connected and Autonomous Vehicles

by Mingyou MA

Addressing congestion in large cities is a major concern for traffic management
centres, especially when new transportation modes emerge rapidly. Lately, con-
nected and autonomous vehicles have gain a lot of popularity due to the promise
of providing a new flexible transportation mode, which could be shared, real-time,
electric and without the need of using any parking slots due to the continuous move-
ment of cars. Future predictions foresee a considerable increase of the effective road
capacity through intelligent and inter-connected vehicles. On the flip-side, more ve-
hicles might be observed on the road if the autonomous vehicles get so comfortable,
cheap and available that aggregated transit forms such as buses or trains become
obsolete. But evaluating the impact of injecting a new fleet of autonomous vehicles
in the existing road network is quite challenging as many unknown factors need
to be taken into consideration, especially if they will run in a taxi-mode environ-
ment. Multi-agent simulation seems like an adapted tool to be able to evaluate the
behaviour of such vehicles, the variation of traffic demand, the network response
to incidents, etc. This report reviews the state-of-the-art multi-agent transport sim-
ulation frameworks along with presenting the methods, results and limitations of
simulating a real-world urban dynamics using Victoria Road, Sydney as the case
study.
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Chapter 1

Introduction

1.1 Background

The history of self-driving cars can be traced back to the 1920s, with the promis-
ing trails took place in the 1950s. Experiments on autonomous vehicles (AVs) have
been continuously conducted for a century. With the advancement of technology,
modern vehicles are developed significantly, demonstrating different degrees of au-
tomation. Higher level of automations are still under development and testing, and
will finally achieve fully automated vehicles. Potentially, AVs could benefit the so-
ciety economically and environmentally by reducing crashes, cost of congestion, en-
ergy consumption and pollution. AVs could also change the vehicle ownership and
alter the pattern of future land use (Panagiotopoulos and Dimitrakopoulos, 2018).
Apart from that, they are able to transform the existing transport network when
vehicle are provided with connectivity and interactions with pedestrians, other ve-
hicles and even infrastructure.

Automated vehicles can be classified into 5 levels (scaled from 1 to 5) based on
the degree of driving automation defined by SAE International (2016). Conventional
cars are level 0 vehicles which do not exhibit any driving automation features, mean-
ing that drivers have to perform the entire dynamic Driving Task (DDT) at all the
times. While, level 1 automated vehicles have the capability to execute either the
longitudinal or the lateral vehicle motion control subtask. Both lateral and longitu-
dinal vehicle motion controls enable level 2 automated car to perform partial driv-
ing automation. From level 3 of automation, the Automated Driving System (ADS)
performs the entire DDT when AS is engaged. With level 3 automations, vehicles
monitor the Operation Design Domain (ODD) to determine whether ODD limits are
about to exceed. If so, the level 3 vehicles will issue a timely request to intervene to
the DDT fallback-ready user. Level 4 is built on level 3, with smoother vehicle-driver
transitions to minimise the risk. The vehicle safety is significantly enhanced. In level
5, the fully driving automation will be finally established. Drivers are not required to
perform the DDT or DDT fallback module. And drivers are fully considered as pas-
senger when ADS is engaged. Currently, the most advanced commercialised models
of AVs could only be considered as level 2.

Yet, the proliferation of AVs is still far from guaranteed. The high production cost
of AVs hinder the large-scale implementation and mas consumer availability (Cars,
2012; Fagnant and Kockelman, 2015). Various questions associate with AVs, relating
to legal, liability, privacy, licensing, security and regulations of insurance, making
the implementation of AVs more challenging. Nevertheless, AVs are increasingly
grabbing attentions from transport policymakers in various countries. And the AVs
related research projects have become more favoured in the most recent years. Thus,
investigating the impacts of AVs on the urban area is an critical in order to boost the
realisation of future autonomy traffic.
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1.2 Public’s Perception of Connected and Autonomous Vehi-
cles

Public’s perception will play a crucial part of determining the role of the driver-
less cars in the future. The current studies using stated preference methods on au-
tonomous vehicles (AVs) heavily focus on level 5 automation. Public acceptance
of AVs is mainly governed by four aspects namely, awareness, cost, safety and demo-
graphic differences.

Starting from awareness, Schoettle and Sivak (2014) conducted a survey in the
USA, Australia and the UK, and concluded that on average two thirds of people had
hard of driverless cars. This number rose significantly , with 80% of 347 respondents
in Austin, Texas, USA were aware of AVs in 2016 due to the continuous testing of
self-driving cars in Austin (Bansal, Kockelman, and Singh, 2016). However, the per-
centage can be as conservative as 63%, which indicates that most of the public are
aware of AVs but there is still a considerable proportion that are not. But this num-
ber is expected to be increased on a yearly basis due to more media coverage of this
new mode of transport.

Cost is one of the important factors affecting travelling behaviour. A study car-
rying a series of analysis of online comments regarding the public’s perception of
driverless cars demonstrated that cost is a biggest concern (Fraedrich and Lenz,
2014). They also found that the majority of respondents were not prepared to pay
any extra for this new transport mode. And the expected average additional cost
brought by AVs were around US$2,000. The National automobile Dealers Associa-
tion of the USA forecast that the average additional cost of AVs would be US$7,000-
10,000. Currently, the cost of technology required for a semi-driverless car tremen-
dously exceeds the average cost that people are prepared to pay. For instance, the
additional cost for Tesla’s enhanced autopilot with autonomy level 3 is US$49,000.

Safety concern is an inevitable component when a new mode of transport is in-
troduced. A study performed by Jardim, Quartulli, and Casley (2013) requested re-
spondents to rank safety, cost and legal issues that associate with the self-driving car.
The result showed that 80% ranked safety as the primary concern. Dai and Howard
(2013) mentioned that the public will become more interested in AVs if they could
actively exhibit more safety benefits. A similar finding stated by Kyriakidis, Happee,
and Winter (2015) also indicated that the safety was the number one concern and the
most attractive quality of a self-driving vehicle.

Finally, distinct demographic groups displayed attitudes towards self-driving
cars differently. On average, men thought AVs would be safer, while considering
more about cost. On the other hand women thought AVs to be less safe and valued
safety more than men. Interestingly, older women did not believe that the safety
of AVs was promising. Additionally, younger generations are more interested in
purchasing a private self-driving cars rather than using shared autonomous vehi-
cles (Jardim, Quartulli, and Casley, 2013).

1.3 Private and Shared Autonomous Vehicles

The future AV-era will inevitably transform urban transport environment. Two
major visions of adopting AVs as new modes of transport are private AVs and shared
AVs (SAVs) with on-demand services. There are several SAVs modes which are able
to be developed based on the existing mobility services, such as carsharing (e.g.
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GoGet), ridesourcing (e.g. Uber), and ridesharing (e.g. UberPool), which can be
classified as below (Nazari, Noruzoliaee, and Mohammadian, 2018):

• AV-rental - An autonomous carsharing system, whereby a traveller can rent an
AV for a specific amount of time (e.g. on a daily or hourly basis) regardless of
the number of trips made in that period.

• AV-taxi - An autonomous taxi system or autonomous ridesourcing, whereby
a traveller can make a single trip from a specific location to another point,
thereby making it a point-to-point. It is a trip-based service. AV-taxi will either
have a backup driver or no driver. AV-taxi will be ideally operated as the on-
demand service, with either station-based mode or free-flow mode.

• AV-access/egress - AVs could be a part of the multimodal public transport
trips that consist of three stages: access, main part and egress. (Yap, Correia,
and Arem, 2015)

• AV-carpool - AVs could serve for the carpooling services, which is more envi-
ronmentally friendly and sustainable.

Generally, AVs could facilitate personal independence and mobility, thus further
increasing the demand for automobile travel. In the autonomy traffic, however, the
already-congested traffic patterns and roadway infrastructure would be negatively
impacted due to the increased trip-making. SAVs could potentially become an op-
timal solution to enhance the mobility while alleviating traffic congestion. Fagnant
and Kockelman (2015) demonstrated that each SAV could replace approximately 10
privately-owned vehicles. Therefore, share and automated mobility services would
direct the future transport system towards positive directions.

1.4 Impacts of Autonomous Vehicles

It is viable to program AVs to not break traffic laws, with shortened reaction
times and capability to smooth traffic flows. The improvement of fuel economy and
the reduction of emissions are also promising features that AVs could potentially
benefit the society.

Recently, researchers are developing ways for AV technology to reduce conges-
tion and fuel consumption. For instance, AVs are capable to sense and possibly
anticipate lead vehicles’ braking and acceleration decisions. Such technology al-
lows for smooth braking and find speed adjustments of following vehicles, leading
to fuel savings, less brake wear, and reductions in traffic-destabilising shockwave
propagation. Regarding intersection management, AVs could potentially create a
new paradigms for signal control. Such advanced system could nearly eliminate
the intersection delay. However, Dresner and Stone (2008) estimated that at least
95% AV-market penetration may be required to achieve such intelligent interesction
deployment.

Apparently, numerous benefits would be difficult to realise until high AV shares
are present. With 10% of all vehiles on a given freeway segment are AVs, there will
likely be an AV in every lane at regular spacing during congested time, which could
smooth traffic for all travellers. While AVs have a potential to increase roadway
capacity with higher market penetration, the induced demand resulting from more
automobile use might require additional capacity.
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The safety and congestion-reducing impacts of AVs have potential to create sig-
nificant changes in travel behaviour. In the future AVs traffic environment, it may
bring higher automobile use, resulting in increased emissions, greater petrol con-
sumption, etc. Nevertheless, some fuel-saving strategies could be developed as AVs
are programmable. For example, AVs’ smart parking decisions could help avoid
cruising for parking. Liu (2018) modelled the joint equilibrium of departure time
and parking location choices when commuter travel with autonomous vehicles, us-
ing bottleneck-constrained highway model to capture the essentials of the traffic dy-
namics and commuters’ departure time choices. Liu proved that since walking time
was replaced by additional AV self-driving time, there were substantial differences
in commuting equilibrium proposed by Arnott, De Palma, and Lindsey (1991). With
the consideration of social cost, travel cost for parking, number of parking space
and the distance between parking spaces and city center, Liu also compared the
total system cost for automated AV parking under two distinct flow patterns i.e.
user equilibrium and system optimum time-dependent which accounts the toll and
parking cost. The result reveals that if the social cost of unit parking supply does not
vary too much over space, there should be more parking spaces in the city center
to save self-driving of AVs; and the parking should be planned further away from
city center if the social cost of parking in city center is much more expensive than
that for locations further away. This concludes that the future autonomous traffic
environment has the higher dependency on the existing infrastructures and facili-
ties. Therefore, both urban transport environment and travellers’ mobility pattern
will be significantly impacted with the introduction of self-driving vehicles.

1.5 Simulation and Autonomy Traffic

As mentioned above, the current technologies like car-sharing and ride-sharing
could be transformed into shared autonomous vehicles (SAVs) in the near future.
The evolutionary future autonomous modes of transport would substantially alter
travellers’ mobility patterns. However, to examine such potential impacts brought
by SAVs is challenging as currently due to various barriers to AVs implementation,
AVs have not been officially tested in urban transportation system in a large scale, so
most of the research works utilise simulation method to assess the developed mod-
els for AVs. For example, a simplified symmetric grid-based urban area with all-AVs
traffic served as a platform for agent-based model operation in order to estimate en-
vironmental benefits brought by SAVs (Fagnant and Kockelman, 2015). A similar
research work applying Central Area, Singapore as a case study used taxi trajec-
tory data to model SAVs. Also, the multi-agent simulation was adopted to validate
online and off-line vehicle-rebalancing models; and dynamic vehicle-passenger as-
signment (Lima Azevedo et al., 2016).

1.5.1 Conventional Simulation Models

Modelling and simulation of the real-world traffic is an effective approach to
get more insights of traffic congestion; and to answer the problems of improving
the traffic conditions. Conventionally, the two major traffic simulation models are
static models and dynamic models. A static model represents an unchanged study
area and a fixed time period without considering the fluctuation of demand of trips
over the period. Also, the interactions between different time and distance steps are
not taken into account. A typical static model is the four-step model. By contrast,
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a dynamic model is driven by the variability of transport demand over the study
period. It is more suitable to describe the physical flow of road traffic. There are three
approaches in dynamic modelling i.e. microscopic, mesoscopic and macroscopic
models (Haman et al., 2017).

Even these simulation models are sophisticated and widely used in transport
planning, some limitations still exist. Starting from the static models, although it has
capability to model for large spatial scales, it utilises the travel demand that does not
depend on time, which makes it impossible to capture the actual congestion. And
to fulfil the aim of dynamic modelling for wide spatial scales, mesoscopic models
are more applicable. However, it is less likely for mesoscopic models to replicate the
local effects of traffic due to their coarse modelling properties. Microscopic models
is able to maximise the detail of simulation of traffic dynamics, but it has higher
computational cost and is less flexible.

1.5.2 Agent-based Simulation Model

Multi-agent system (MAS) is a tool which is well suited to the simulation of ur-
ban dynamics. It is more flexible than macroscopic models based on differential
equations to simulate the scalable phenomena. MAS creates an artificial universe in
which the experiments can be conducted by representing the individuals, their be-
haviours and their interactions. MAS is also regarded as a microscopic simulation.
Four fundamental aspects of an MAS are: Agent Behaviours, Environment, Schedul-
ing and Interaction. To explain in detail, (i) Agent Behaviour is intended to model the
deliberative process agents. It is the approach to formulate agents’ minds. (ii) En-
vironment characterises the various physical objects in the simulated world. It is the
process of shaping the situated environment, physical body of the agents and the
endogenous dynamics of the environment. (iii) Scheduling handles the modelling
of the passage of time and the definition of scheduling policies adopted to run the
behaviours of agents. And finally, (iv) Interaction targets on outcomes of actions and
interactions between agents at a given moment.

Comparing to conventional micro-, meso-, and macroscopic simulations, MAS
offers more flexibility, with relatively lower computational cost. The flexibility of
MAS can be defined from multiple dimensions. For instance, the complexity of agent
can be easily modified with accordance to the actual urban environment. Changing
the agent’s behaviour, ability to learn and rules of interactions is considered as the
primary dimension of flexibility. The secondary flexibility is the ability to adjust
levels of description and aggregation, which means that the MAS can manipulate
the group of agents, single agents or subgroups of agents, with the heterogeneous
levels of description coexisting in a specific model.

Additionally, the emergent phenomena could be explicitly observed by MAS.
Emergent phenomena result from the interactions of individual entities. Consider-
ing a traffic jam as an example, it results from the behaviour of and interactions be-
tween individual vehicle drivers. It is challenging to adopte the conventional mod-
elling approaches to understand and predict such emergent phenomena. However,
MAS has the nature of modelling the emergent phenomena by using canonical ap-
proaches (Bazghandi, 2012).
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Chapter 2

State-of-the-art Multi-agent
Simulation Framework

Multi-agent simulation is system and computational methods to study a col-
laborative and reactive transportation system by modelling autonomous decision-
making by a collection of subsystem entities called agents. This computational method
is developed to simulate the more complex adaptive system (CAS) or a distributed
artificial intelligence (DAI) system. Compared to the traditional discrete event sim-
ulation, agent-based simulation defines the local behaviour rules of each entity from
a bottom-up perspective. The main roots of agent-based simulation are in mod-
elling human social and organisational behaviour and individual decision making.
Hence, agent-based modelling tools can be used to test how changes in individual
behaviours will affect the system’s emerging overall behaviour.

Most of the agent-based frameworks are built by individual-based models. Note
that individual-based models have roots in the activity-based travel demand mod-
els. Basically, all the agent-based frameworks exhibit a similar architecture, in which
combines two transportation components – travel activities and network loading –
into an integrated simulation platform.

Although dynamic traffic assignment (DTA) and agent-based simulations share
some similarities (For example, both systems use simulation as a network loading
method to measure travel time. And travellers’ route choices are revised based on
the measured travel time in previous iteration.), there are some significant dissimi-
larities between DTA approach and agent-based simulation which can be regarded
as follows:

• Simulation-based DTA targets on changing travellers’ route choice decisions
only. Whereas, an agent-based model provides the feedback of travel time
to a multi-dimensional decision domain, including not only travellers’ route
choice decisions but also a series of activity decisions, such as activity location,
schedule and change of participation agenda.

• Since the decision-making for an agent is more complex than simulation-based
DTA, an agent-based system usually adopts heuristic rules in feedbacks to
achieve approximate convergence and consistency. Hence, less computational
resources for agent-based simulation is required in order to achieve equilib-
rium between the network loading an assignment result.

The existing agent-based transportation systems follow a structural design as
follows:

a) An agent represents an individual person or traveller and is associated with
the individual demographic and travel characteristics.
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b) The system generates demand, or an activity travel plan, for each individual
agent based on demographic characteristics.

c) Activity plans are revised, enhanced and finalised such that all plans meet
spatial (system environment) and temporal (schedule) constraints.

d) The activity plans are fed into a simulation module to produce the network-
wide transportation results.

e) Network performance is a source of feedback to both activity plan and route
choice decisions. Agents revise activity travel plans and route choice decisions,
such that both decisions are optimised simultaneously.

This section aims to present a brief introduction of each well-known agent-based
transportation simulation frameworks, including their features, drawbacks, models,
framework structure, etc. Simulation platforms are illustrated in each distinguish
sub-section.

2.1 TRANSIMS

TRANSIM is an open-source activity-based simulation platform. Travellers are
modelled as agents and synthesised by census and survey data. The traffic sim-
ulation component in TRANSIMS is microscopic, consisting of car-following and
lane-changing models.The framework structure of TRANSIMS is as follows:

1) Creation of population based on demographic data.

2) Generation of activities and activity locations.

3) Mode and routing choice simulation.

4) Transportation microsimulation based on choices.

5) Partial revision of individual activities and route choices based on the updated
overall traffic performance.

Some drawbacks of TRANSIMS are:

• TRANSIMS cannot initially predict the fastest route as it does not provide the
congestion information. Instead, an iterative relaxation approach is adopted
by running the initial routes generation and replanning a fraction of the trips.

• TRANSIMS adopts a very detailed microsimulation, which leads a high com-
putational cost.

Overall, TRANSIMS seeks to model traffic flow dynamic characteristics more,
with larger demand of computation.

2.2 MATSim

MATSim is also an open-source activity-based simulation platform. The system
is capable to run millions of agents simultaneously in the metropolitan area. It con-
sists 2 layers i.e. physical layer and mental layer. Physical layer simulates the actual
physical world where the agents move (traffic network). Whereas, mental layer gen-
erates strategies including route, mode choice and daily activity plans, and builds
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agents mind. The overall architecture of MATSim is considerably similar to TRAN-
SIMS, except that the details of implementations.

The structure framework of MATSim is presented below:

1) Generation of a set of initial plans.

2) Each agent is assigned a created plan for execution.

3) Running the simulation to execute the plans.

4) Re-score the plans based on a produced new travel time for each trip.

5) A subset of the agents is chosen for plan adjustment or injection of new plans
by external strategy modules.

6) Assigning those subset agents with a new or revised travel plans by running
strategy modules.

7) Generation of updated route and mode choices for each agent.

8) Re-running the simulation until the stop criterion is satisfied.

Additionally, MATSim utilises spatial-queue model to measure traffic dynamics
and queue spillovers rather than using point-queue model), with less time consump-
tion. Nevertheless, the spatial-queue model may cause the unrealistic simulation of
traffic dynamic. Especially for the case of congestion, not only losing appropriate
flow dynamics propagated along the space and time dimensions but possibly result-
ing in an overestimation of travel time. But generally, MATSim is computationally
fast.

2.3 OpenAMOS

An open-source activity-based simulation framework, OpenAMOS applies zonal
socio-economic data and household travel survey data to synthesise agents. Agents’
entire daily activity-travel pattern is segmented into various components as follows:

• Activity type choice models;

• Activity duration models;

• Activity location choice models;

• Mode choice and mode transition models;

• Initial departure timing models;

• Initial location models.

Basically, multinomial logit model which is used to formulate the activity-level
patterns dominates the entire simulation process The structure of OpenAMOS is
presented below:

1) Activity type choices are estimated by multinomial logit model.

2) These estimations finalise the blocked attributes.

3) The open attributes of an individual’s activity-travel pattern are estimated by
microsimulator in OpenAMOS.
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4) OpenAMOS inputs the generated trips to a dynamic traffic assignment simu-
lation platform called MALTA.

5) The dynamics in network traffic flow along the temporal dimension is repli-
cated in MALTA module.

6) The performance producedby MALTA feeds back into OpenAMOS.

7) Traveller’s activity-travel pattern decisions are updated based on the MALTA
performance feedbacks.

In conclusion, OpenAMOS focuses more on individual-based model with the
extensive application of socio-economic and household travel survey data.

2.4 SACSIM

SACSIM is a regional travel forecasting model, adopting multinomial logit and
nested logit models for daily activity generations. It is an integrated activity-based
disaggregate econometric model. Agents are synthesised by households drawn from
the region’s U.S. Census Public Use Microdata Sample.

A detailed description of framework structure is as follows:

1) Generation of a 1-day activity and travel schedule for each person in the pop-
ulation (including a list of agents’ tours and trips on each tour).

2) The created activities are loaded to the network in order to determine the con-
gestion and network performance.

3) Then the network performance is re-measured to model and update a person’s
activity and travel patterns.

4) The updated travel patterns are injected to the network again.

5) The model achieves equilibrium and stops when the network performance
used as input matches the network performance which is obtained from the
simulation result.

2.5 ILUTE

ILUTE is a comprehensive urban transportation agent-based simulation plat-
form. The key feature of this system is its ability to capture interactions between
urban land use, travel demand, the transportation system, even the environmental
impacts. Also it is capable to address high-resolution policy analysis in a variety of
transportation and urban planning contexts. ILUTE is developed based on the ur-
ban land use. Land use and transportation are fundamentally connected, in which
the land use pattern directly determines travel needs, activity agenda type and par-
ticipation, and viability of alternative travel modes.

ILUTE is a disaggregated, behavioural approach to simulate activities of agents.
Various entities such as persons, families, houses, buildings, firms could be the
agents in ILUTE. It is worthwhile to mention that ILUTE aims to simulate the emer-
gent land-use / transportation interactions in the long term. In this study, ILUTE is
less relevant. Thus, it will not be explained in detail.
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2.6 SimAGENT

SimAGENT is a system that features PopGen, CEMSELTS (Comprehensive Econo-
metric Microsimulator for Socioeconomics), CEMDAP (Comprehensive Economet-
ric Microsimulator for Daily Activity travel Patterns) and traffic assignment. The
detailed explanation of structure is as follows:

1) PopGen generates a synthetic population of individuals and households.

2) CEMSELTS simulates and generates long-term demographic attributes for per-
sons and households.

3) CEMDAP generates the daily activity travel plan for each individual. It sim-
ulates activity-travel patterns of all individuals in the region for a 24-hour pe-
riod. There are two separate steps in activity plan generation: (1) generation of
mandatory activity and corresponding schedules; (2) generation of full daily
activity agenda and schedule.

4) Traffic-assignment module determines a traveller’s route choice decision and
measures the performance of the overall network. The time-dependent trip
interchange matrices of O-D among the traffic analysis zones which are gener-
ated from CEMDAP are served as fed into the traffic assignment component
to determine routes and the overall network performance.

2.7 SimMobility

SimMobility is a high-level architecture simulation platform, which is composed
of three main modules differentiated by the time frame (short-term, mid-term and
long-term), in which the behaviour of an urban system is modelled. It is also an
agent-based simulator. Every agent exists and is recognised by all three levels; and
information is used according to each level’s needs. The long-term time frame is
similar to ILUTE, which predicts the evolution of land use, determining the life-
cycle decisions of agents. As mentioned above, it beyond the scope of this study.
Therefore, the long-term framework is not considered.

Regarding the mid-term time frame, it handles transport demand and supply at
the day level. It simulates daily activities and travel at the individual level by us-
ing the behavioural models, which exhibits the similar architecture as OpenAMOS
and MATSim because the mid-term is also an activity-based simulator. Activity se-
quence, trip origin / destination, and departure times are predicted based on the
econometric activity schedule approach. The framework structure is illustrated as
follows:

1) The preday model generates the activity plans and trip decisions for each agent
based on the availability of modes, utility specifications, and activity types
(either mandatory or non-mandatory activities).

2) The output from preday model will be served as an input in the within-day
model. The within-day model makes the predictions of routes for planned
trips, transforming activity plans and trip decisions into actual trips.

3) Depending on the traffic conditions and effective travel times, the agents could
reschedule the rest of the day, cancel an activity, reroute while travelling.
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4) Then the supply simulator follows the dynamic traffic assignment. It runs for
private and public transport modes. Unlike other simulation platforms, this
framework also accurately estimates the effect of bus operations on the road
traffic.

5) The updated network performance measures were then transferred back to
preday model as a learning mechanism for individual choices re-estimation.

6) Though an iterative process, consistency can be achieved between the demand
and supply models of the mid-term simulator.

Note that, there is a connection between mid-term and short-term simulators.
The within-day component provides trip chains to the short-term simulator, uses as
input demand to simulate specific network regions in mode detail. (Figure 2.1)

FIGURE 2.1: Connection between short-term and mid-term simula-
tors in SimMobility Lima Azevedo et al., 2016

SimMobility short-term framework contributes to simulations of drivers’ route
choice decisions and driving behaviour parameters, and randomly-assigned vehi-
cle characteristics. This framework is developed based on the open-source traffic
simulation application MITSIM. It allows to precisely capture drivers’ responses to
neighbouring conditions by implementing the acceleration model. Also, the lane-
changing model integrates mandatory and discretionary lane changes in a single
structure. Additionally, merging behaviour through courtesy and yielding as well
as drivers’ response to traffic signals, information, speed limits and incidents. Other
simulation platforms mentioned in the previous subsections are less advanced than
SimMobility short-term simulator, with the coarser modelling on flow dynamics
characteristics (MATSim).

In Lima Azevedo et al., 2016, the authors integrate the SimMobility short-term
simulator with a detachable autonomous mobility on-demand (AMOD) controller.
AMOD controller consists of a fleet management which controls the vehicle-rebalancing,
and a vehicle-tracking component. To fully apply the scenario where autonomous
vehicles are penetrated in the traffic, the authors adjust and modify the accelera-
tion and lane-changing models in the vehicle flow model of SimMobility short-term
simulator, achieving the behaviour homogenisation of autonomous vehicles. For ex-
ample. the safety margins in regard to gap acceptance, safety headway, and reaction
time were reduced to 1.0, 1.0 and 0.5s respectively.
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2.8 Agentpolis

Agentpolis is another open-source large-scale multi-agent simulation platform.
Agents are created in the simulation environment that consists road network com-
posed nodes connected by road segments (powered by OpenStreetMap). A case
study in Fiedler, Čáp, and Čertickỳ, 2017 defines on-demand vehicles and passen-
gers as agents. The authors aim to utilise AgentPolis to investigate the impact of
large-scale mobility-on-demand system deployment on total traffic intensity and
formation of congestion. Unlike other introduced multi-agent simulation platforms,
Agentpolis does not include activity plans generator. Hence, the agents’ trip deci-
sions are not re-scheduled. Although this simulation platform exhibit easy-to-use
features, comparing with other simulations platform, it is limited for the purpose of
this study.

In this project, MATSim is adopted. More details of MATSim will be introduced
in the following chapter.
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Chapter 3

MATSim Framework

3.1 MATSim Introduction

MATSim1 is an activity-based, extend-able, multi-agent simulation framework
written in Java. The framework is designed for large-scale scenarios, meaning that
all models’ feature are stripped down to efficiently handle the targeted functional-
ity. Some previous studies in investigating autonomous vehicles used MATSim as
a simulation platform. For the network loading simulation, a queue-based model is
implemented. Comparing with SimMobility Short-Tem, it omits complex and com-
putationally expensive car-following behaviour. At the current stage, MATSim is
designed to model a single day.

Agents in MATSim are travellers who generate daily activities. The ultimate goal
of agents is repeatedly optimising its daily activity schedule while in competition for
spatial-temporal slots with all other agents on the transportation infrastructure. The
mechanism is similar to the route assignment iterative cycle, but goes beyond route
assignment by incorporating other choice dimensions like time choice, mode choice,
or destination choice into the iterative loop. Figure 3.1 demonstrates the simulation
loop and corresponding functionality in MATSim. In every iteration, prior to the
simulation of the network loading with the MATSim mobsim i.e. mobility simulation,
each agent selects a plan from its memory. This selection is dependent on the plan
scores, which are computed after each mobsim run, based on the executed plans’
performances. On the next iteration, a certain share of the agents (typically 10%) are
allowed to clone the selected plan and modify this clone i.e. rescheduling. At the end
of each iteration, the actual performance of the plan in the synthetic environment is
taken to compute each executed plan’s score. The iterative process is repeated until
the average population score stabilises.

3.1.1 Traffic Flow Model in MATSim

The large-scale modelling with lower computational cost is the key feature in
MATSim. It utilises the computationally efficient queue-based approach to model
the traffic dynamic (Figure 3.2). A vehicle is a added to the tail of the waiting queue
when it enters a new road segment (i.e link) from an intersection. As it is the queue-
based model, it remains on that link until 1) the time for travelling on the link with
free flow has passed; and 2) until the vehicle has become the head of the waiting
queue; and 3) until the next link has an additional slot for the vehicle to enter. How-
ever, the car-following effects are unable to be captured as this model over simplifies
the actual traffic dynamic.

1This entire chapter cites the book The Multi-Agent Transport Simulation MATSim (Horni, Nagel, and
Axhausen, 2016)
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FIGURE 3.1: MATSim Functionality

FIGURE 3.2: MATSim’s Traffic Flow Model
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3.1.2 Co-Evolutionary Algorithm and Agent’s Plan

To achieve the equilibrium condition, the co-evolutionary algorithm is adopted
as illustrated in Figure 3.3. Different species subject are able to interact with each
other through operating such co-evolutionary algorithm. In MATSim, individuals
are represented by their daily activity plans, where a person represents a species.
The advantage of using the co-evolutionary algorithm is that the optimisation can
be performed with respect to agents’ daily activity plans and travel plans. Apart
from the achievement of standard traffic flow equilibria, which ignores travellers’
activities, in the co-evolutionary algorithm, the agents cannot further improve their
plan unilaterally.

FIGURE 3.3: The co-evolutionary algorithm in MATSim

3.2 Scoring and Plan Evaluation

As detailed in Section 3.1.2 and by Figures 3.3, MATSim operates based on a co-
evolutionary algorithm, in which each agent learns by manipulating multiple plan.
And all these plans are scored by executing and evaluating them in mobsim. And to
run for the next iteration, those plans with higher scores will be chosen or modified.
Here are the key elements in the iterative process:

• mobsim - The mobility simulation dumps a selected plan per each agent and
executes it in the simulated environment.

• scoring - The performance of the plan in the simulated environment in each
iteration is taken to calculate executed plan’s score.

• replanning - There are three steps in the replanning module:
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1) If an agent has more plans than the maximum number of plans that is de-
fined in the MATSim configuration by the user (for more details about the
MATSim configuration, please refer to the Appendix), the exceed plans
will be removed according to the plan sector.

2) Some agents’ plans may be subjected to duplication, modification, and
finally selection for the next iteration. This is defined as choice extension
or innovation.

3) All other agents select between their existing plans.

To explain these three elements in detail, an agent’s generated plans in each iter-
ation could be considered as the agent’s choice bank with respect to that iteration.
Basically, step 1 and 2 re-plan or modify the choice bank, while step 3 implements
the selected plan. Normally, the plan with higher score will be more likely to be
chosen.

Obviously, the MATSim agent-based model is scoring-oriented. Only those plans
with relatively high scores will be assigned to the agent and survive the plans re-
moval step. Therefore, the scoring function has to be precise and be able to capture
the heterogeneity of travellers’ preferences. For instance, some may favour con-
gested traffic over smooth one, others may prefer a crowded but more budget trips
by public transport, while others could choose cycling or walking to reach his or her
destination regardless the weather condition.

It is noteworthy that MATSim is modelled based on complete day plans, which
means that the partial daily-modelling is not straightforward. However, modelling
the whole-day activity using utility function is limited due the absence in the litera-
ture, MATSim adopts Charypar-Nagel scoring instead. In the following subsections,
the Charypar-Nagel Modelling Approach will be introduced.

3.3 Charypar-Nagel Utility Function

Charypar and Nagel (2005) formulated the score function based on road conges-
tion model proposed by Vickrey (1969). In MATSim, apart from the time-of-travel
modelling, which is the original interest of Charypar-Nagel model, this model is be-
ing utilised for evaluating other choice dimensions. In this section, the mathematical
expressions of Charypar-Nagel utility function are detailed and explained.

Basic Function - The basic utility score Splan consists two components i.e. Sact,q
and Strav,mode(q), representing activity utilities and travel utilities, respectively. The
sum of the Sact,q plus the sum of Strav,mode(q) gives the score of the plan. which can be
expressed as:

Splan =
N−1

∑
q=0

Sact,q +
N−1

∑
q=0

Strav,mode(q) (3.1)

where N is the number of activities in the whole-day plan. Trip q is the subsequent
trip following the activity q. And the last activity is combined with the first activity
to balance the number of trips and activities.

Activities - The utility of an activity q is computed by:

Sact,q = Sdur,q + Swait,q + Slate.ar,q + Searly.dp,q + Sshort.dur,q (3.2)

where the individual components are defined as follows:
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• Sdur,q
Sdur,q = βdur · ttyp,q · ln(tdur,q/t0,q) (3.3)

is the utility function of the activity q, where opening the opening hours of the
locations of activities are included. tdur is the performed activity duration, βdur
is related to the marginal utility of activity duration and t0,q is the duration
when utility starts to be positive.

• Swait,q
Swait,q = βwait · twait,q (3.4)

represent the waiting time spent. βwait is the direct marginal utility of time
spent waiting; and twait,q is the waiting time.

• late.ar, q

later.ar, q =

{
βlate.ar · (tstart,q − tlatest.ar,q) if tstart,q > tlatest.ar,q

0 else
(3.5)

quantifies the late arrival penalty, where tstart,q is the activity starting time q
and tlatest.ar is the latest possible penalty-free activity starting time.

• Searly.dp

Searly.dp =

{
βearly.dp · (tend,q − tearliest.dp,q) if tend,q > tearliest.dp,q

0 else
(3.6)

defines the penalty for not staying long enough, where tend,q is the activity end-
ing time and tearliest.dp.,q is the earliest possible activity end time q. Normally,
the value of βearly.dp is set to be zero, with the expectation of good-performance
data about this effect.

• Sshort.dur,q

Sshort.dur,q =

{
βshort.dur · (tshort.dur,q − tdur,q) if tdur,q < tshort.dur,q

0 else
(3.7)

is the penalty for ‘too short’ activity, where tshort.dur is the shortest possible
activity duration. Similarly, βshort.dp is recommended to be zero.

Figure 3.4 illustrates the sample of activity starting and ending time in the MAT-
Sim configuration.xml file.

Travel - Travel disutility for a leg q is defined as:

Strav,q = Cmode(q)+ βtrav,mode(q) · ttrav,q + βm ·∆mq +(βd,mode(q)+ βm ·γd,mode(q)) · dtrav,q + βtrans f er · xtrans f er,q
(3.8)

where:

• Cmode(q) is a mode-specific constant.

• βtrav, mode(q) is the direct marginal utility of the time spent travelling by
mode.

• ttrav,q is the travel time between activity locations q and q + 1.
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FIGURE 3.4: Timing in the MATSim configuration.xml file

• βm is the marginal utility of money (normally positive).

• ∆mq is the change in monetary budget caused by fares, or tolls for the complete
leg (normally negative or zero).

• βd,mode(q) is the marginal utility of distance (normally negative or zero).

• γd,mode(q) is the mode-specific monetary distance rate (normally negative or
zero).

• dtrav,q is the distance travelled between activity locations q and q + 1.

• βtrans f er are public transport transfer penalties (normally) negative.

• xtrans f er,q is a 0/1 variable signaling whether a transfer occurred between the
previous and current leg.

Generally, MATSim is executed based on the co-evolutionary algorithm which
reviews, updates, discards and selects the generated plans from mobsim. The utility
functions are the key for evaluating the performance of each plan and running the
co-evolutionary algorithm program. In the next chapter, a MATSim case study will
be detailed.
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Chapter 4

Case Study: Victoria Road, Sydney

To use agent-based model to investigate the autonomous vehicles, firstly, the
basic multi-agent framework for simulating the conventional traffic environment
has to be conducted. This chapter introduces the original datasets adopted in this
project for the traffic simulation purpose.

4.1 Background of Victoria Road

Victoria Road is a major transport corridor in Sydney, New South Wales, Aus-
tralia, connecting Parramatta with the western end of Anzac Bridge. It is currently
one of the longest roads in Sydney. The total length is 21 km, with three lanes in
each direction between Rozelle and Gladeville. The road was named as one of the
most congested road in Sydney with an average travel speed of 24 kilometres per
hour during the morning peak hour and 31 kilometres per hour in the afternoon
peak (Haynes, 2013), which makes this road a good case study for traffic analysis
and modelling.

FIGURE 4.1: Victoria Road, Sydney
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4.2 Data Description

If multi-agent simulation is a well-designed skyscraper, then data is columns and
beams. Data is the critical component in the agent-based model in order to replicate
the real world urban dynamics. Original datasets utilised in this project are detailed
in this section.

4.2.1 Traffic Network Data

Traffic network data describes the configuration of the road, including capacity,
free flow speed, number of lanes, etc. There are two components in a traffic network
i.e. nodes and links. A link (or edge) of a network is the connections elements
between the nodes (or vertices) of the network. In the traffic network data of Victoria
Road, all the links have a direction, meaning they point from one node to the next.
The attributes of the traffic network data1 are as below:

• node coordinate - The coordinate is an essential data representing the basic ge-
ographical features. In MATSim the standard coordinate system is EPSG:32608
– WGS84.

• link starting node and ending node - Each link has a pair of nodes with cor-
responding IDs (represented by numerical values). The link starting node (re-
ferred as from-node) and link ending node (referred as to-node) indicate the
link direction.

• capacity - The capacity of a link indicates the maximum number of vehicles
could be fitted on the road under congested traffic condition.

• speed - The free flow speed of the link (in km/h).

• number of lanes - The number of lanes on each traffic links.

4.2.2 Origin-Destination Matrices

An origin-destination matrix (O-D matrix) describes travellers’ movement in a
certain urban area. O-D matrix is an important data in the second step of classical
urban transportation planning system model — trip distribution. Such matrices indi-
cates the number of trips generated / attracted by each region. The O-D matrices can
be processed and used to synthesise the virtual population, which will be explained
in the following chapter. O-D matrices are results of the microscopic simulation per-
formed by traffic modelling software — AimsunNext. It is noteworthy that the trips
are generated and attracted by ‘centroids’ in AimsunNext. Additionally, the number
of trips are not necessarily integer.

In this project, 9 O-D matrices are provided with different time range, describing
the number of trips generated from one centroid and attracted by another from 06.45
am to 09.00 am.

4.2.3 Centroids

Centroids are the artificially-defined points in the traffic network by the Aim-
sun Next. Vehicles are ‘pumped’ or ‘absorbed’ by centroids in the AimsunNext. A
centroid or a couple of centroids are being allocated in each traffic analysis zone

1Note that the node data and link data are in two separated .GeoJSON files
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(TAZ), meaning that in a TAZ unit, all the generated trips are being aggregated and
represented by centroids. Each centroid has a coordinate, which is an essential in-
formation to understand the travellers’ travel pattern.

The datasets mentioned in this chapter have to be processed to comply with the
requirement of MATSim input file. In the next chapter — Methodology, the methods
and assumptions associated with data processing are presented.
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Chapter 5

Methodology

The input datasets required by different simulation framework could vary sig-
nificantly. For instance, in SimMobility, the simulation-related datasets are pro-
grammed and managed by SQL, precisely postgreSQL. While in MATSim, the es-
sential data of traffic network and agents’ plan are stored in the .xml file with its
unique format. This section details the assumptions, methods and algorithms used
to synthesise the virtual urban traffic environment for the Victoria Road, Sydney
along with the creation of population.

5.1 Network Clearance

The network in MATSim is node-to-node based, which means that the links have
to be terminated by two nodes. In the original datasets, some links do not have the
information about the ending nodes. This causes those links to be open-ended. Typi-
cal locations of ‘open-ended’ links are the boundary of the network and roundabouts
(Figure 5.1).

FIGURE 5.1: Open-ended links

Luckily, the QGIS-extracted link.geoJSON file exhibits additional details of all
the links on Victoria Road. Thus, the link terminating coordinates are yielded, con-
sequently filling the missing data. This process can be regarded as the ‘creation of
fake nodes’, as the yielded coordinates do not actual exist on the original datasets.
To replicate a complete network of Victoria Road, artificially-added nodes have to
be taken into account.

Overall, there are 602 nodes and 1199 links, with 212 ‘fake nodes’ which accounts
for 35%. In addition, the fundamental features of links such as free flow speed,
number of lanes, etc. are also included, forming the final MATSim input file —
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network.xml1. The final product is visualised by Via, the MATSim visualiser (Fig-
ure 5.2).

FIGURE 5.2: Visualisation of Victoria Road by Via, the MATSim visu-
aliser

5.2 Population Creation

Environment, agents and interactions are the three main components in the multi-
agent simulation. In the previous section, the traffic environment formulation has
been introduced. To replicate the real world travelling behaviours, agents’ daily ac-
tivities have to be calibrated by the data reflecting the actual urban dynamics. In this
section, the method of data manipulation and processing are introduced.

5.2.1 Creation of Residence and Workplace

Agents can be regarded as travellers in MATSim. Each of them has a specific
plans of daily activity. To generate the population, some basic properties have to
be created such as residences , schools or workplaces. In this case study, due to
data limitation (only 9 O-D matrices were provided), only the traffic in the morning
peak hours was simulated. Therefore, all the simulated agents are considered as
morning commuters, meaning that only residences and workplaces (or schools) are
the possible locations where agents could perform their activities.

Hence, the residences and workplaces are written by processing the original net-
work data. Due to lack of the facility data describing the actual locations of the
buildings on the Victoria Road, some artificially-generated facilities (residences and
workplaces) are placed, surrounding the nodes (Figure 5.3).

5.2.2 Trip Distribution

Once the location of facilities has been defined, the trips generated and attracted
by each of them have to be quantified. In this project, each simulated trip extracted

1For the details of network.xml; please refer to the Appendix.
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FIGURE 5.3: Creation of facilities

from the AimsunNext software is regarded as the trip generated by a single agent.
This means that the total number of trips in the O-D matrices represents the size of
the agent population in MATSim agent-based model.

Unlike the AimsunNext microscopic simulation, in MATSim, all the trips are
node-to-node-based, rather than centroid-to-centroid-based. Hence, the trips have
to be redistributed from centroids to nodes. The procedures of redistributing trips
are as below:

1. Allocation of nodes to the nearest centroids - The first step of converting
centroid-to-centroid-based trips to node-to-node-based trips is assigning the
nodes to the nearest centroids where the vehicles are pumped or absorbed. In
this project, the allocation of nodes are based on the one traffic analysis zone
(TAZ) unit. All the nodes that stay in the same TAZ as the centroids do will be
regarded as the centroid-adjacent nodes. Note that the nodes on the boundary
of the TAZ will be also considered as the centroid-adjacent nodes with respect
to that TAZ. (Figure 5.5)

FIGURE 5.4: Centroid-node allocation
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2. Trip redistribution - Trips generated or attracted by centroids are aggregated
in each TAZ unit. It is challenging and almost impossible to know the at-
tractiveness of each centroid-adjacent nodes. Hence, in this project, all the
trips generated or attracted by centroids are evenly distributed to the centroid-
adjacent nodes, which can be expressed by:

tα|CJ i
=

T|CJ

n|CJ

(5.1)

where

• T|CJ
is the total number of trips generated or attracted by centroid CJ ;

• n|CJ
is the total number of centroid-adjacent nodes with respect to centroid

CJ ;
• tα|CJ i

is the total number of trip that are received by each centroid-adjacent
nodes α|CJ i

with respect to centroid CJ .

FIGURE 5.5: Centroid-node allocation

3. Centroid-based to node-based trips conversion - To define a proper trip, its
origin and destination have to be cleared. In the original O-D matrices, the
trips start from one centroid and end at the other. But in MATSim, the edges
of a trip are nodes. The mathematical expression of the conversion of centroid-
based to node-based trips can be regarded as:

t(α|CI i
,α|CJ j

) =
T|(CI ,CJ)

n|CI
· n|CJ

(5.2)

where

• t(α|CI i
,α|CJ j

) is the total number of trips generated by the node α|CI i, which

belongs to the origin centroid CI ; and attracted by node α|CJ j
, which be-

longs to the destination centroid CJ . This can be regarded as the node-to-
node-based trips;
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• T|(CI ,CJ) is the total number of aggregated centroid-to-centroid-based trips.

5.2.3 Route Assignment

Route assignment or route choice concerns the selection of paths between origins
and destinations in a transportation network. To build an agent’s mind, initially, the
paths have to be determined and be written in the agents’ fundamental plan which
is served as the MATSim input i.e. AgentPlan.xml. However, there are thousands of
solutions of the routing problem. In this project, to simplify this step, all the agents
are assumed to be ‘greedy’, meaning that they would only choose the path with
the lowest cost. This assumption leads the application of Dijkstra’s shortest path
algorithm which is used to find the shortest paths between nodes in a graph. Here,
the cost of travelling on the links is the link travel time, which is derived by using
link length divided by free flow speed.

The Dijkstra’s algorithm is applied and formulated in Python as shown below:

def d i j s k t r a ( graph , i n i t i a l , end ) :
# s h o r t e s t paths i s a d i c t of nodes
# whose value i s a tuple of ( previous node , weight )
s h o r t e s t _ p a t h s = { i n i t i a l : ( None , 0 ) }
current_node = i n i t i a l
v i s i t e d = s e t ( )

while current_node != end :
v i s i t e d . add ( current_node )
d e s t i n a t i o n s = graph . edges [ current_node ]
weight_to_current_node = s h o r t e s t _ p a t h s [ current_node ] [ 1 ]

f o r next_node in d e s t i n a t i o n s :
weight = graph . weights [ ( current_node , next_node ) ] + weight_to_current_node
i f next_node not in s h o r t e s t _ p a t h s :

s h o r t e s t _ p a t h s [ next_node ] = ( current_node , weight )
e l s e :

cu rren t_sh or te s t_w eigh t = s h o r t e s t _ p a t h s [ next_node ] [ 1 ]
i f c urre nt_s hor t es t_ weig ht > weight :

s h o r t e s t _ p a t h s [ next_node ] = ( current_node , weight )

n e x t _ d e s t i n a t i o n s = { node : s h o r t e s t _ p a t h s [ node ] f o r node in s h o r t e s t _ p a t h s i f node not in v i s i t e d }
i f not n e x t _ d e s t i n a t i o n s :

re turn " Route Not P o s s i b l e "
# next node i s the d e s t i n a t i o n with the lowest weight
current_node = min ( n e x t _ d e s t i n a t i o n s , key=lambda k : n e x t _ d e s t i n a t i o n s [ k ] [ 1 ] )

# Work back through d e s t i n a t i o n s in s h o r t e s t path
path = [ ]
while current_node i s not None :

path . append ( current_node )
next_node = s h o r t e s t _ p a t h s [ current_node ] [ 0 ]
current_node = next_node

# Reverse path
path = path [ : : −1 ]
re turn path

5.2.4 Time of Travel

An agent-based simulation in the application of transport modelling can be re-
garded as the activity-based model. Time is the one last dimension required in MAT-
Sim. Without the definition of time, agents will not perform the daily activity. Thus,
time of travel has to be allocated to each agent. However, in reality, the actual de-
parture time is extremely difficult to capture. In this project, the departure time for
each agent is randomly assigned to an agent based on the time range corresponding
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to O-D matrices. For instance, for the O-D matrix describing the number of trips
from 06.45 am to 07.00 am, an agent can be depart at any time in between 06.45 am
to 07.00 am such as 06.50 am.

With the creation of agents’ residences, workplaces, origins, destinations, depar-
ture time and routes, total 103, 700 agents were formulated. The associated agent
plans was written in a single AgentPlan.xml. A sample agent’s plan is shown be-
low:

<person id ="12" >
<plan >

< a c t type ="h" x ="333284 .09" y ="6250641 .41" l i n k ="33910" end_time = " 0 8 : 0 3 " />
<leg mode=" car ">

<route >105087 117570 1082342 117573</ route >
</leg >
< a c t type ="w" x ="333362 .42" y ="6250353 .08" l i n k ="1082341" end_time = " 1 2 : 3 0 " />

</plan >
</person >

For the generation of full agents’ plan, please refer to the Appendix.
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Result

As mentioned in the previous section, in the agent-based model, there are three
essential components, namely environment, agents and interactions between agents
and environment. MATSim requires the initial loading of the environment and pop-
ulation, then conducting the simulation and returning the outputs describing the
variability of agents’ revised plans in each iteration. Also, the interactions are able
to be visualised by the visualiser. In this chapter, the simulation results1 are detailed
along with the result visualisation2.

6.1 Interactions

Interactions are the third fundamental element in an agent-based simulation
model. Agents have the capability to interact with other. Also, they are able to
response, react and re-schedule (3Rs) based on the environmental changes. In MAT-
Sim, the interactions are not explicit. The most direct way is to use the MATSim
extensions such as Simunto Via, senozon, etc. to visualise the result and to yield
more insights of interactions.

6.1.1 Variation of Travel Speed

Figure 6.1 demonstrates the visualisation of the morning peak hour (06.45 am to
09.00 am) traffic on the Victoria Road, Sydney, using the output from MATSim sim-
ulation. This visualisation was achieved by Simunto Via, the MATSim visualiser.

It is obvious to see that each agent’s3 colour varies substantially. This is due to the
colour settings in the visualiser. Each colour has a different meaning. For instance,
the agents with green colour indicate that their travel speeds in the environment
were the same speed as the allowable link travel speed i.e. the free flow speed.
While, the orange arrows means that those agents were travelling with a quarter of
the maximum link travel speed.

The variation of colours directly reflects the changes in agents’ travel speed. It is
a typical example of the agent-environment interaction, as agents are able to adjust
their travel behaviours with accordance to the overall traffic condition. The mecha-
nism behind such feature is the queuing model introduced in Section 3.1.1 with the
aid of Figure 3.2.

1The results section only illustrates the findings of interactions — the third key element in the agent-
based model

2Please visit https://youtu.be/QTOMq_3Tvg4 to watch the video of output visualisation.
3An agent is represented by an arrow in the visualiser.

https://youtu.be/QTOMq_3Tvg4
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FIGURE 6.1: Variations of agents’ travel speed

6.1.2 Re-routing

As discussed in Section 3.2, the co-evolutionary algorithm assists the replanning
module to upgrade or re-write agents’ plan, and selecting the plans with higher
scores as the input for the next iteration. Re-routing is one of the replanning ap-
proaches. Figure 6.2 presents the difference between route assignment at the initial
iteration and iteration 10. It is clear to observe that the agents made minor alter-
nations in route choices. It is noteworthy that the revised paths are not necessarily
to be physically shorter or with lower cost of travel. Instead, those updated routes
always have higher scores with respect to the previous iterations (Figure 6.3).

FIGURE 6.2: Agents’ Re-routing

6.1.3 Re-timing

Time of travel is the other degree of freedom which could be adjusted in order
to elevate the score of a plan. Figure 6.4 and 6.5 compares the different departure
time selected by agents at the initial iteration and iteration 10. It can be found that
at iteration 10, agents have ‘learnt’ to leave their ‘residences’ (origins) either earlier
or later (i.e. before 06.45 am and after 09.00 am).
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FIGURE 6.3: An escalation of total travel distances from iteration 0 to
1.

FIGURE 6.4: Time-related statistics at iteration 0.
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FIGURE 6.5: Time-related statistics at iteration 10.

6.2 Score Statistics

Figure 6.6 shows the changes of plans’ score from iteration 0 to 10. Clearly, in this
case, the equilibrium condition achieved at iteration 5 as the scores were converged
at about 52.

6.3 MATSim Computational Cost Statistics

Figure 6.7 presents the MATSim’s computational cost to perform the morning
traffic simulation on the Victoria Road. Iteration 0 has the longest runtime, which
indicates that MATSim takes more time to process the initial agents’ plans. Once the
convergence achieved, the runtime dropped significantly and varied slightly (itera-
tion 5 – 9).



6.3. MATSim Computational Cost Statistics 35

FIGURE 6.6: Score statistics for simulating Victoria Road, Sydney

FIGURE 6.7: Computational cost statistics
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Chapter 7

Limitation and Future Study

7.1 Data Limitation and Future Data Support

This project aims to initiate the multi-agent transport simulation, which lays the
foundation for future agent-based modelling and simulating for connected and au-
tonomous vehicles. The mono-mode urban transport environment (i.e. private ve-
hicles only) is adopted for the case study. To fully address the challenges of urban
dynamics, the next step would be building both agents and traffic environment with
higher complexity, which means that agents could have additional features in their
daily activity such as secondary trips; more facilities could be added in; and multi-
ple means of transport like taxi, buses, trains, etc. could be involved in the existing
model.

The datasets utilised in this study are basic and limited as:

1. The O-D matrices only capture the travel patterns of private vehicles, leading
the mono-mode traffic simulation;

2. The socio-demographic data does not give any information about the work
start time, which impacts the plan-replanning module. Consequently, the agents
travel behaviours are failed to be simulated with accordance to the real-world
scenario;

3. There is no data for the facilities such as schools, shops, workplaces and res-
idence, on the Victoria Road. The artificially-created node-surrounding facili-
ties further degraded the simulated traffic environment.

4. Centroid-to-centroid-based trips are at the aggregate level. The manual trip
redistribution could end up with trip over- or under-estimation.

To enhance quality of the replication of agents and traffic environment for per-
forming the multi-agent transport simulation, the suggested raw datasets are listed
as below:

• General Transit Feed Specifications (GTFS) that describes schedules and asso-
ciated geographic information of the public transportation services operating
on the Victoria Road, Sydney;

• Taxi trajectory data for autonomous vehicles modelling;

• Land use data detailing the locations and characteristics of residential build-
ings, firms and schools on Victoria Road for the creation of the authentic urban
environment;

• Smart card data presenting the actual usage of the public transport for building
up the high-level agents’ plans.
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7.2 Holonic Multi-agent System

Simulation is an appropriate approach to establish abstractions of the system
in order to study the complex systems which are inaccessible through direct obser-
vation and measurement. Simulating large number of entities requires great com-
puting resources. A solution to tackle this problem is to apply macroscopic mod-
els. Nevertheless, macroscopic models are unreliable as they are failed to allow
the observation at the individual levels. However, the Holonic Multi-Agent Sys-
tem (HMAS) seems like a suitable tool to deal with this high complex traffic system.
Structure of a Holonic Multi-Agent System is built upon the Multi-Agent System.

A Holonic Multi-Agent System provides the promising approach for construct-
ing the complex domains which is characterised by a hierarchical structure. A holon
is defined as simultaneously a whole and a part of a whole. A holon can be com-
posed by other holons, with the fulfilment of three conditions: being stable, having a
capacity for autonomy and being able to cooperate. The hierarchical structure com-
posed of holons is called a holarchy (Figure 7.1). Tchappi et al. (2018) proposed that
the multilevel mechanism is subjected to be developed for the entire simulation (for
agent behaviours and environment) while remaining generic. They intend to extend
the four perspectives of an MAS to integrate the multilevel aspects. The ultimate
goal is to make an agent’s behaviours and interactions dynamically adapt the exter-
nal execution constraints.

FIGURE 7.1: Structure of Holonic Organisational Multilevel Model

To introduce the holonification method, the previous research work presented
by Esmaeili, Mozayani, and Motlagh (2014) is reviewed.

Esmaeili, Mozayani, and Motlagh mentioned that in a holonic multi-agent sys-
tem, the interaction only happens in between holons that are either from their rel-
ative upper, lower or same level. Note that in such systems, any individual holon
is regarded as semi-autonomous entities, in which the their actions and behaviours
are dominated by their own local knowledge under the control of their super-holon.

With the recent advancement in multi-agent systems, agents have become more
organisation-oriented in which each agent interacts only with its neighbours. Hence,
regardless of the complexity of the system, only some local information about the en-
tire network is sufficient for agents. Finally, a more efficient system can be achieved.

A multi-agent network can be represented by MAN =< A, I >, where A is the
set of agents of MAS and I refers to the set of interaction relationship between the
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agents. An adjacency matrix Λ, in which the rows and the columns are indexes of
agents and the items in Λ are defined as:

Λ(ai, aj) =

{
1 if (ai, aj) ∈ I
0 otherwise

; ai, aj ∈ A (7.1)

And the holonification problem in each level of a holarchy is finding a set, H, of
subsets hi, such that:

{h1, h2, ..., hk}| hi ⊂ A;
⋃

i

hi = A (7.2)

where, k is the total number of holons an hi are the holons themselves. Esmaeili,
Mozayani, and Motlagh assumed that that in each level of a holarchy, the holons are
disjoint, which is different from the general definition of general holonic multi-agent
system. Thus,

∀hi, hj ∈ H; l(hi) = l(hj) −→ hi ∩ hj = ∅ (7.3)

Well-defined equations i.e. Eq.(7.1) – (7.3), allows to implement of holonification
process. Esmaeili, Mozayani, and Motlagh adopted the bottom-up approach to es-
tablish the holarchy. This process is defined as Holonification. The very first step of
holonification is locating the agents which are eligible to play the role of the head.
A basic holon is composed by these head agents at the lowest level in the holarchy.
Then, the other agents of the network attempt to join these holons according to their
corresponding position in the network and the eligibility of their neighbours. This
process is repeated in order to construct the upper levels of holarchy until a single
holon, which can be regarded as a root, is generated, containing all the other holons
in the holarchy.

The concept of centrality in network theory allows to select the important agents
as the heads in the network. Esmaeili, Mozayani, and Motlagh used eigenvector
centrality to define the eligibility of the agent ai to become a head as follows:

elig(ai) = λ−1
max ∑

j
Λ(ai, aj) · elig(aj) (7.4)

where, the λi are the eigenvalues of the adjacency matrix Λ, and λmax is the largest
of them.
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Consequently, by comparing eligibility values of each agent, the head within
each level of holarchy can be determined. That is:

Head =

{
ai ∈ A|elig(ai) >

∑j elig(aj)

|A|

}
(7.5)

Then a basic holon for each the agents that are selected as head is created. Each
head is the only members of the corresponding created holon. And for each of
the non-head agents, they are required to find the neighbour with higher eligibil-
ity value:

BN(ai) = arg max
aj∈Neighbour(ai)

(elig(aj)) (7.6)

where, BN(ai) is the function to find the most eligible neighbour of agent ai, and
Neighbour(ai) is the set of all neighbours of ai in the network.

Holon(ai) =

{
haj aj ∈ Head (ai, aj)

Holon(aj) otherwise
; aj = BN(ai) (7.7)

where, Holon(ai) specifies the holon that ai should join, and haj is the holon that aj
is a head in.

The algorithm is repeated from Eq. (7.4) – (7.7) until there is only a single holon
created in the current level i.e. the root holon. Finally, the holonic and organisational
multi-agent network is formed.

TABLE 7.1: Traffic network configuration

Property Value
Number of intersections 25

Number of links 31
Length of each link 436.72m

Maximum speed 60km/h
Number of lanes per link 2

Arrival distribution uniform
Simulation duration 5 hours

Traffic demand 30,000 veh/hour

To evaluate the proposed “bottom-up" method is evaluated by implementing the
algorithm into the problem of controlling traffic signals. Here, intersections are con-
sidered as agents, with the roads connecting these intersections which are regarded
as interaction edges (Figure 7.2).

FIGURE 7.2: Multi-agent network model of a urban traffic network
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The tested urban traffic network consists 25 intersections i.e. agents and 31 con-
necting roads (interaction edges). And framework utilised to conduct the experi-
ment is AIMSUN. Additional parameters are illustrated in Table 7.1.

The result of the holonic multi-agent simulation indicates that the holarchy struc-
ture is effective, especially for the large scaled and complex system.

To integrate the concept of such bottom-up holonification method with the traf-
fic simulation for Victoria Road, it could be applied to the classification of agents
that are regarded as travellers. Agents with similar travel patterns or daily activity
plans, potentially, are able to be clustered together to lower the computational cost,
boosting the efficiency of analysis.
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Chapter 8

Conclusion

This report introduces the how the multi-agent simulation can be applied to the
transport modelling. With the detailed comparison of the state-of-the-art agent-
based simulation frameworks, MATSim is adopted in this project as MATSim re-
quires fundamental transport-related dataset to perform the simulation. Also, MAT-
Sim is developed based on the activity-based model, having the co-evolutionary
scored-based modules to comprehensively review, edit or even discard the agents’
behaviours. It is noteworthy that MATSim has lower computational cost compar-
ing with other multi-agent platforms such as SimMobility, due to its queuing-based
model. However, this model is not capable to replicate the traffic dynamics. Vehicles
behaviours in a microscopic level cannot be evaluated.

To understand how the agent-based model works, in this project, a real-world
case study — Victoria Road, Sydney is applied. Multiple datasets such as dynamic
origin-destination matrices, network shape files, centroid configurations extracted
by AimSun are utilised, processed and integrated in order to build two of three es-
sential elements i.e. agents and environment in the multi-agent simulation. Due to
data limitation, agents are assigned the privately-owned vehicles as the only mode
of morning commuting (06.45 am to 09.00 am) transport. Artificially-created facil-
ities like residences and workplaces which are served as trip origins and destina-
tions, respectively, are synthesised with the network. Additionally, all the centroid-
to-centroid-based trips that are simulated by AimSun have been converted to node-
to-node-based trips in order to comply with MATSim’s requirement. Finally, with
the aid of Dijkstra’s shortest path algorithm and randomly timing generation algo-
rithm, 103,700 agents have been created and simulated in MATSim.

The simulation results reveal the key characteristics of the agent-based model.
Firstly, agents are able to respond to the external environment. For instance, agents’
travel speeds reduce significantly when the traffic volume rises. Secondly, agents
learn how to re-route without changing their trip origins and destinations. Further-
more, earlier or later departure is the other approach of optimising the travel plans,
with the enhancement of scores of agents’ plans, until the convergence has achieved.

To investigate autonomous vehicles (AVs) using multi-agent simulation as a tool,
future data supports have to be readily available. Typical required datasets are taxi
trajectory data, GTFS data, smart card data and land use data. Apart from that, the
holonic multi-agent system (HMAS) could be developed based on the current agent-
based model to enhance the efficiency of simulation. For on-demand autonomous
vehicles, HMAS is potentially capable to cluster the AVs with accordance to their
stations or regions.
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Appendix A

Multi-Agent Simulation Using
MATSim - The Step-by-step
Instruction

The appendix is a documentation explaining how to conduct the multiagent sim-
ulation for conventional traffic using MATSim. It is the part of the project — Multi-
agent Simulation for Connected and Autonomous Vehicles in the Data61 vacation
scholarship program. Note that the page numbers are reset (starting from page 1) in
the appended document.
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Quick Guide to Workflow

Download MAT-
Sim and Simunto Via

Understand the input data

Prepare the input files
using share folder

Run MATSim

Result analysis

Visualisation

1 Download and Set up MATSim

1. Visit https://matsim.org/downloads/.

2. Download the latest stable release (.zip).

Figure 1: MATSim Download Page
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3. Extract the downloaded MATSim file (.zip).

4. Download Eclipse IDE for JAVA developers.
https://www.eclipse.org/downloads/packages/release/2018-12/
r/eclipse-ide-java-developers

5. Launch Eclipse IDE.

You should have JAVA JDK in your system to launch Eclipse IDE.
If not, please check the tutorials for JAVA JDK installation below:
Tutorial for Windows installation: https://youtu.be/j-X-JNTlN78
Tutorial for Mac OS installation: https://youtu.be/y6szNJ4rMZ0
Tutorial for Linux installation: https://youtu.be/VvMYTQ_q-6o

6. Create a new JAVA project in Eclipse IDE.
Deselect Use default location and click Browse... to load the
extracted MATSim folder.

Figure 2: Create a MATSim project in Eclipse IDE

7. Click Next then click Libraries .
Remove matsim-0.10.1-source.jar.

Figure 3: Remove matsim-0.10.1-source.jar
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8. Expand matsim-0.10.1.jar
Click Source attachment:(None) Edit... .
In the Source Attachment Configurationwindow, check Workspace
location. Then click Browse... .
Select matsim-0.10.1-source.jar. Then click OK OK Finish .

Figure 4: Source Location Selection

9. Now MATSim has been successfully installed and set up.

2 Download MATSim Visualiser - Via

1. Create a license https://simunto.com/via/licenses/free.

2. Check the email sent by Simunto Via and download the license
(.xml).

3. Visit https://simunto.com/via/download.

4. Place the license (.xml) in the Via-1.8.3 folder.

Figure 5: Via License Loading

5. Now Via has been successfully set up.
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3 Input Data

3.1 Network.xml

In a network, there are two components, which are nodes and links.
The first input file is Network.xml, which is used to create the traf-
fic environment. In MATSim, links should be node-to-node-based.
However, the original shape file of Victoria Road contains some open-
ended links. Therefore, some fake nodes were created. Each node must
be provided a coordinate. Note that, the standard coordinate system
in MATSim is EPSG:32608 – WGS84 / UTM zone 8N. Thus, the
original coordinates in Victoria Road shape file has to be converted.

MATSim requires some fundamental information about links. Typical
properties of a link are capacity, length, free speed and number of
lanes. Additionally, the link starting node and ending node should be
also indicated.

All the network related data is stored in the Network.xml under the
folder of ./MATSim_Victoria_Road/Victoria_Road_Input

Figure 6: Screenshort of Network.xml

3.2 AgentPlan.xml

The agent’s initial plan is a critical component in multi-agent simu-
lation. An agent’s plan is highly similar to a traveller’s daily activity.
Here are the essential components in AgentPlan.xml that users have
to define before running MATSim.

1. person id - Each agent has to be assigned a unique numerical value
as its ID to distinguish with other agents.

2. act - An act is predetermined in the MATSim Configuration.xml.
Typically, activities could be either ‘h’ for activities taking place
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at home, ‘w’ for activities at work, or ‘edu’ for educational ac-
tivities. Additional types of activities such as recreational activ-
ities could be included as well as long as it is predefined in the
Configuration.xml.

3. x and y - The x and y values describe the coordinate of the location
where an agent’s activity takes place. Again, the coordinate system
used in MATSim is EPSG:32608 – WGS84 / UTM zone 8N.

4. link - An agent has to be spawned on a link which is close to its
activity location.

Note that, MATSim will not execute the agent’s plan without properly
defining the spawning link.

Figure 7: Screenshort of AgentPlan.xml

5. start time - This is the time describing the activity starting time.
The execution of MATSim will not be affected without this infor-
mation. However, the variation of the activity starting time will
influence the agent’s activity-replanning scheme.

6. end time By contrast, an activity terminating time for each agent
is compulsory in order to run MATSim properly.

7. leg mode - The mode of transport an agent utilised has to be
mentioned in the agent’s plan. To activate the ChangeLegMode
module which is used to redefine agent’s travel mode, there should
be more than one mode in the agent’s plan.

8. route MATSim requires ‘node-to-node-based’ trips. In the initial
agent’s plan, the user has to assign a route for each agent to travel
from one node to the other. The route is represented by a series of
node ID in a sequential order.

Caution: An agent’s plan has to be terminated at an act. And the sequence
of an agent’s act must follow act - leg - act - leg - ...- leg -
act pattern. Otherwise, MATSim will return a series of errors.

3.3 Configuration.xml

MATSim is configured in the Configuration.xml file, building the
connections between the users and MATSim and containing a settings
list that influence how the simulation behaves.
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All configuration parameters are simple pairs of a parameter name
a parameter value. The parameters are grouped into logical groups;
one group has settings related to the Controler, like the number of
iterations.

In the Victoria Road case study, some basic MATSim settings are
adopted (Figure 8).

Figure 8: Screenshort of Configuration.xml

1. global - Please leave this module along with its sub-parameters
unchanged in the Configuration.xml.

2. network - The value of parameter inputNetworkFile should be
the name of network file. In this case, the value is Network.xml.

3. plans - The value of parameter inputPlansFile should be the
name of agent’s plan file. In this case, the value is AgentPlan.xml.
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4. controler - Typical parameters of controler are:

• outputDirectory - The value should be the directory for MAT-
Sim outputs.

• firstIteration - The numerical value indicates the first iter-
ation. Normally starting from iteration 0 to execute the initial
plan.

• lastIteration - The terminating iteration.

• writeEventsInterval - the interval of writing the event.xml
file.

The event.xml will be detailed in the later chapter.

• mobsim - Leave the value of this parameter as “qsim”.

• routeingAlgorithmType - The recommended value is “AStar-
Landmarks”

5. planCalcScore - Typical parameters of planCalcScore are:

• lateArrival, earlyDeparture, performing, traveling, waiting
- These are the rewards or penalties (scores) that each agent could
get. And a score is used to indicate whether the plan is performing
better than the others.

• activityType - As mentioned in section 3.2, in the agent plan,
the act has to be cleared. The value of act in AgentPlan.xml
file should be consistent with the value defined in activityType.
Some commonly utilised values are ‘h’ for home-based activity,
‘w’ for work-based activity, and ‘edu’ for educational-related
activity.

6. strategy - At the end of each iteration, MATSim evaluates each
agent’s plan and performs the re-planning task to optimise agents’
daily activities by executing several strategy-related modules as
below:

• Module_X - This parameter has the value describing the name
of strategy-replanning module. Typical replanning modules are
BestScore (selecting the plan with the highest score from the
previous iteration), TimeAllocationMutator (changing the de-
parture time of agents), and ReRoute (reassigning an agent a new
route).

• maxAgentPlanMemorySize - In each iteration, MATSim gener-
ates a number of plans for each agent and stores internally. At
the end of each iteration, some generated plans will be chosen
as the plan for execution in next iteration. The best X num-
ber of plans will be kept, which is determined by the value of
maxAgentPlanMemorySize.
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Note that maxAgentPlanMemorySize = 0 means that MATSim will
keep all the generated plans, but this would reduce the MATSim opera-
tion speed.

4 How to Use Share Folder

Two folders are included in the share folder i.e.
and .

MATSim input files (Configuration.xml, Network.xml and AgentPlan.xml)
are in Victoria_Road_Input . And data generation scripts and other pro-
cessed data are in TripPlan folder. The files in TripPlan folder will be
detailed in this section.

1. Folder Dynamic_OD_matrices_Victoria_Rd

• 9 original unprocessed demand matrices (.txt) which are the
outputs generated by AimSun.next, describe the number of trips
produced by one centroid and attracted by the other centroid.

• missing_centroids_from_shp_file.txt - some nodes that are
in the O-D matrices could not be referred back to the shape file.
This .txt file includes all the missing centroids.

2. Folder Demand_csv

• 9 demand matrices with coordinates of centroids (.csv). Note
that only those O-D pairs that have non-zero trips are presented
in these matrices, meaning that those zero-trip O-D pairs have
been filtered.

3. Folder Network_Data

• Node_GJ.csv is the original node related data that extracted from
nodes.shp, with EPSG:32608 – WGS84 / UTM zone 8N coor-
dinate system.

• Final_Nodes_Victoria_Road.csv contains all nodes data includ-
ing the created fake nodes as mentioned in section 3.1 along with
the coordinates.

• Final_Links_Victoria_Road.csv contains all links data with
the essential information such as free speed, lanes, nodes connect-
ing the links, length, etc.

• Centroid_Coordinate.csv has coordinates of centroids that ac-
tually generated or received trips.

• Edges_Dijkstra_Times.csv is a tuple-based dataset, containing
the information about from_node, to _node, link travel time and
link ID. This file is used to initialise the Dijkstra’s algorithm.

4. Folder Regional_Nodes
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• Vicinity_Nodes_Centroid.csv stores the allocated nodes that
belong to their nearest centroids.

5. Folder Script

• 1.Node_Pairing_Trip_Assignment_Nodes_Centroid.ipynb - This
code converts the centroid-to-centroid trips to node-to-node
trips in order to comply with the MATSim requirement. All
the trips that generated or received by each centroid is evenly
distributed to the adjacent nodes within one TAZ unit. Thus, the
Vicinity_Nodes_Centroid.csv and 9 O-D matrices are loaded.
The output files are stored in .csv format under Demand_Node
Complex .

• 2.Agent’s_Plan_Creation.ipynb - This program creates the
actual agent’s plan by integrating node-to-node O-D matrices
stored in Demand_Node Complex , Dijkstra’s algorithm, departure
time generator, and household / workplace generator. Addition-
ally, this program is able to combine all the agenda files in one file,
which is stored in Victoria_Road_Agent_Plan_Complex_Final.csv
under Path_Trip_Agenda All_Time_Agenda . Note that this output file
is not the final AgentPlan.xml.

• 3.Agent’s_Plan_xml_Writing.ipynb - This is the script that
converts the Victoria_Road_Agent_Plan_Complex_Final.csv
to AgentPlan.xml which is kept under Agent_xml .

These three scripts should be run in a sequential order. Also,
the script format is .ipynb. To execute these scripts, Juypter-
Notebook (Python) is recommended. https://www.anaconda.com/
distribution/#download-section

5 Running MATSim

To runMATSim, Network.xml, AgentPlan.xml and Configuration.xml
have to be placed under the same directory. Here, in the share folder,
please refer to folder Victoria_Road_Input .

Then launch placed in the extracted MATSim folder.
Figure shows the MATSim basic GUI.

Figure 9: MATSim GUI

Only the Configuration.xml is required. Click Choose , then load the
Configuration.xml. Then to run MATSim, click Start MATSim .
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6 Output

After running MATSim, the output files will be stored under the same
directory as the Configuration.xml (path: Victoria_Road_Input output
victoria_road ). Some typical outputs are detailed as below:

1. X.events.xml - Every action in the simulation is recorded as a
MATSim event, be it an activity start or change of network. Each
event possess one or multiple attributes. By default, the time when
the event occurred is included. Additionally, information like the
ID of the agent triggering the event, or the link ID where the event
occurred, could be also included. The events file is an important
base for post-analyses, like the visualisers (will be introduced in
the following section). X.events.xml can be found in ITERS it.X ,
where X is the iteration number.

2. X.legHistogram_all.png - In every iteration, a leg histogram is
plotted. A leg histogram depicts the number of agents arriving,
departing or en route, per time unit. Histograms are created for
each transport mode and for the sum of all transport modes. Each
file starts with the iteration number and ends with the transport
mode. Similarly, X.legHistogram_all.png can be found in ITERS
it.X , where X is the iteration number.

Figure 10: Screenshot of X.legHistogram_all

3. scorestats.png - Score statistics presents the average best, worst,
executed and overall average o all agents’ plan for every iteration.
can be found in output victoria_road .

4. traveldistancestats.png - Leg travel distance statistics are com-
parable to score statistics, but instead, they plot travel distance.
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7 Visualisation Using Simunto Via

Simunto Via directly supports the loading of the typical MATSim input
and output files. Network and facilities from MATSim can easily be
visualized. Amultitude of data can be extracted by Via fromMATSim’s
events files, for example vehicle trajectories, activity times and link
volumes. In this section, the basic Via operations are introduced.

Figure 11: Screenshot of Simunto Via, the MATSim visualiser

7.1 Network Visualisation

1. Load network.xml - Click File Add Data... , then select network.xml.
Click Open .

Figure 12: Screenshot of network.xml Loading

2. Add network layer - Click File Add Layer... , then select Network . In
the drop down list on the right-hand side, choose network.xml.
Then click Add (Figure 13)

3. Now, the network has been successfully loaded.
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Figure 13: Screenshot of add a new network layer

7.2 Vehicle Visualisation

1. Load X.event.xml.gz - Click File Add Data... , then select X.event.xml.gz.
Click Open .

Figure 14: Screenshot of X.event.xml.gz Loading

2. Add event layer - Click File Add Layer... , then select Agents Vehicles-from Events .
In the drop down list ‘event’ on the right-hand side, choose X.event.xml.gz,
with Network: network.xml. (Figure 15)

Figure 15: Screenshot of add a new event layer
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3. Click Load Data which is located on the left-hand side of the panel
to load vehicles (with maximum number 500 due to free-version
limitations).

Figure 16: Screenshot of loading vehicles

4. Now, the vehicles has been successfully loaded.

7.3 Make It Move!

To observe the moving agents on the network, the speed should be
set up by using the panel illustrated in Figure 17. Also, the speed can
be adjusted accordingly.

Figure 17: Speed up the agents’ movement

7.4 Advanced Settings

1. Distinguish agents by their properties - The agents in the network
can be distinguished by the changes of their colour based on their
travel speed, mode choice, etc. This can be set by firstly clicking

on the ‘Vehicles’ panel. Then click color , and set the desired
criteria accordingly as demonstrated in Figure 18.

2. Distinguish links by their properties - Similarly, the links can be
coloured as well based on capacity, free speed, number of lanes,

length or even allowed transport mode. Click on the ‘Network’
panel. Then click color to set the desired criteria accordingly.

Figure 18: Distinguishing agents
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